Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Solution:
After solving so many similar problems, we know this is dynamic programming problem.
The recursion equation is:
For first row: res[0][j]=res[0][j-1]+grid[0][j]
For left column: res[i][0]=res[i-1][0]+ grid[i][0]
For all others: res[i][j]=Math.min(res[i-1][j],res[i][j-1])+ grid [i][j]
Time complexity: O(m*n) extra space O(m)
public int minPathSum(int[][] grid) {
if(grid==null || grid.length==0 || grid[0].length==0) return 0;
int m=grid.length;
int n=grid[0].length;
int[] sum=new int[n];
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(j==0) sum[0]+=grid[i][j];
else if(i==0) sum[j]=sum[j-1]+grid[i][j];
else{
sum[j]=grid[i][j]+Math.min(sum[j-1],sum[j]);
}
}
}
return sum[n-1];
}
No comments:
Post a Comment