Given a collection of numbers, return all possible permutations.
For example,
[1,2,3]
have the following permutations:[1,2,3]
, [1,3,2]
, [2,1,3]
, [2,3,1]
, [3,1,2]
, and [3,2,1]
.
Solution:
Another classic recursion problem.
Recursion solution:
1.base case:
1.base case:
if(items.size()==num.length)){...}
2. Recursion steps:
try current candidate:used[i]=true;
items.add(num[i]);
recursion to next level: helper(res,items,num,used);
back track to current level: used[i]=false;
items.remove(items.size()-1);
Tips:
Skip used element, use a boolean array to track all the used element.
public List<List<Integer>> permute(int[] num) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(num==null || num.length==0) return res;
Arrays.sort(num);
boolean[] used=new boolean[num.length];
List<Integer> items= new ArrayList<Integer>();
helper(res,items,num,used);
return res;
}
public void helper(List<List<Integer>> res, List<Integer> items, int[] num, boolean[] used){
if(items.size()==num.length){
List<Integer> temp=new ArrayList<Integer>(items);
res.add(temp);
return;
}
for(int i=0;i<num.length;i++){
if(used[i]) continue;
used[i]=true;
items.add(num[i]);
helper(res,items,num,used);
used[i]=false;
items.remove(items.size()-1);
while(i+1<num.length && num[i+1]==num[i]) i++;
}
}
Iteration solution:
Assume we have an empty list, and a sorted array{1,2,3}, first we add 1 to the list,there is only one permutation to add 1 which is {1}, then we add 2 to the list, now we have two ways of insertion, one is before 1, the other is after 1, so now we have 2 permutations: {2,1},{1,2}. When we add 3 to the list, we have 3 ways of insertion, in position 0, 1,2 and we have two target list, so totally we can generate 6 permutations.{3,2,1},{2,3,1},{2,1,3},{3,1,2},{1,3,2},{1,2,3}. The iteration solution is based on the scenario.
Assume we have an empty list, and a sorted array{1,2,3}, first we add 1 to the list,there is only one permutation to add 1 which is {1}, then we add 2 to the list, now we have two ways of insertion, one is before 1, the other is after 1, so now we have 2 permutations: {2,1},{1,2}. When we add 3 to the list, we have 3 ways of insertion, in position 0, 1,2 and we have two target list, so totally we can generate 6 permutations.{3,2,1},{2,3,1},{2,1,3},{3,1,2},{1,3,2},{1,2,3}. The iteration solution is based on the scenario.
public List<List<Integer>> permute(int[] num) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(num==null || num.length==0) return res;
Arrays.sort(num);
res.add(new ArrayList<Integer>());
for (int i=0;i<num.length;i++){
List<List<Integer>> newRes=new ArrayList<List<Integer>>();
int l=res.size();
for(int j=0; j<l;j++){
List<Integer> temp= res.get(j);
for(int k=0;k<=temp.size();k++){
List<Integer> item=new ArrayList<Integer>(temp);
item.add(k,num[i]);
newRes.add(item);
}
}
res=newRes;
}
return res;
}
No comments:
Post a Comment