Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)
Solution:
Two pointer:
Very similar to 3Sum, just add another pointer to track the 4th number.
Time complexity: O(n^3)
Two pointer:
Very similar to 3Sum, just add another pointer to track the 4th number.
Time complexity: O(n^3)
public List<List<Integer>> fourSum(int[] num, int target) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
if(num==null || num.length<4) return res;
Arrays.sort(num);
for(int i=0;i<num.length-3;i++){
for(int j=i+1;j<num.length-2;j++){
int l=j+1;
int r=num.length-1;
while(l<r){
if(num[i]+num[j]+num[l]+num[r]==target){
List<Integer> temp=new ArrayList<Integer>();
temp.add(num[i]);
temp.add(num[j]);
temp.add(num[l]);
temp.add(num[r]);
res.add(temp);
while(l+1<r && num[l+1]==num[l]) l++;
l++;
while(l<r-1 && num[r-1]==num[r]) r--;
r--;
}
else if(num[i]+num[j]+num[l]+num[r]<target) l++;
else r--;
}
while(j+1<num.length-2 && num[j+1]==num[j]) j++;
}
while(i+1<num.length-3 && num[i+1]==num[i]) i++;
}
return res;
}
No comments:
Post a Comment